Successful ECM adoption through Outiook

Repstor affinity ™

Extensibility Guide

Product Version 3.7.1
December 2017

Contents

INEFOAUCTION .ttt s h e sttt e bt e bt e s bt e saeesab e st e e bt e b e e beenbeesmeeenteennean 4
Configuration within CUStOM SOIULIONSeiiiiiiiec e e e e e e e e eabae e e enreeas 5
Outlook as an Extensibility Platformi..........eo it 5
2O oI oYl o) doTolo] I = -1 Vo | L=T RPN 6
Standard stssync parameters for Repository Synchronization.........cccoeeccvvveeeieiiiccciieeee e, 6
Repstor custom stssync fUNCLIONATItY ...eeeieeiiiiiiiie e 6
RepsStor-config COMMEANG........oi i e e et e e e et be e e e e at e e e e enbeeeeennbeeeeennrenas 7
Repstor affinity Property MOEIueei ittt e e e et e e e e bt e e e e eareeeesanes 8
oY [[T ol e oY o T<T o 1= R 8
DOCUMENT PrOPEITIES ittt ettt ettt et e e st e e e e e s s s sttt eeeeesssssaabaseeeeessssssassenaaaeesssnas 11
(0] oTo 1 o] AVl od oY o 1= o A [T PP PP PP OPPTRUPPPTTN 14
(0 o g T d T oY o] o1 o A =PSRN 15
Using Properties in custom OUtlook SOIULIONScccuiiiiiiiiii e 15
O oY =T = (ol A =T o Y o 11 L Y2 16
G113 10] 4o Vot 1o o -SSP P PSP 16
Property Page EXEENSIDIILY ...ueiiiiciiiie et 20
NEW MESSAZE EXTENSIONS....uiiiiiiiiieiiiiteee ettt ettt e e e e e s st bt e e e e s s s s sabebeeeeessesssnnrenaaeeesssnnns 21
New Synchronized Message EXTENSIONSeiiieiiieiiciee e ceitee et eette e e e tee e e e etee e e e eree e e eeabaeeeenreeas 23
New Synchronized FOIder EXEENSIONScccuiiiiieiiee ettt e e etee e e e bee e e e eabae e e enreeas 23
New Document Menu EXEENSIDIlItYceeeeiiiiiiiee e e e 24
Lol o Y[Y e e A=Y FY1]| A PSR 24
Outlook Startup and Message Store EXtensibilitycccveeiiiiiiiiciiiice e 25
Repository addition and removal Extensibilitycccoeviieiiiiiiie e, 25
(OIS o) 0 I £ T Vol o a =T 0 Y1 o 1 L Y2 26
DTy =Tot Ao ¥ = O E - =Nt 26
CuStom Field Validationo..ooeoeeeeeee ettt sttt b e s s et as 26
M T=d T I T~ o T o~ PP 26
Applying properties to PArent fOlIAEISc.uviii i e 27
PropertyMap INtEITACES ... ittt e e e tee e e et ae e s e sbae e e e snbaeeeennreeas 27
EXtenSibility DEOUGEING......oveiieeee e e e e e e e e s e e e nrerae e e e e e eeas 27
Extensibility SUPPOIt ODJECL ..oooeieeeee et e e e e e e e e e e s e e nnbereeeeeeeeenas 28
Other Property Page Customization TEChNIQUES........cceviei it 31

AddIiNg NEW REPOSITONY TYPES. . uuviiiiiiiiieieiieeeeeitteeeeeitee e eetteeeestaeeesebteeeesbtaeesssteeessstaeeesasaneessasseeesanses 32

T T aY o] (Sl ST =Y] o | PR 32

Appendix A — Example Properties (SHarePoint)........c.eeeicciiee it 38
EXample DOCUMENT PrOPEITIES . .uviiiieiieiiceiiie e ceitee ettt e ettt e e st e e s stee e s s sbee e e e sabee e s ssabeeesesareeesennsenas 38
Example Folder Properties (Shar€POiNt)........cccuiiiiiieiieiiiiecee e tee et et 40

Appendix B - PropertyMap iNtEITACEuii it sbae e e e sbaee e e snee 42

Appendix C— EXtension SUPPOIt ODJECTcciiiciiiii ittt e e et e e e bae e e e sbeee e e eaees 43

Introduction
The Repstor products can be tailored as required to individual customer requirements and solutions.
Extensibility is available at a number of levels, from basic configuration to full custom extensions.

This document describes various extensibility points within the Repstor affinity product. It should be
read in conjunction with the Repstor affinity installation and configuration guide.

This document assumes familiarity with the Repstor affinity product, with Outlook and with

SharePoint solutions.

Configuration within Custom Solutions

There are a number of features of Repstor affinity that are categorized as configuration, but are key
elements of any customized solution. These are fully documented in the Repstor affinity installation
and configuration guide.

e Central Repositories list — used to help Repstor affinity interact with a server-side solution.
The Central Repositories list is a dynamic server side list that gives the Repstor client
information around what repositories should be synchronized — and how they are
synchronized.

e Property and view synchronization. Many repositories support synchronizing properties and
displaying them in views. These properties can be displayed in the Outlook list view, and
within searches.

Outlook as an Extensibility Platform

Repstor affinity stores its information in an Outlook message store. This means that the Affinity
repositories, folders, and content are all accessible within the standard Outlook object model.
Standard Outlook customization solutions can be used to tailor the Repstor message store. This
guide will describe the properties to examine, and any special considerations when using Outlook
solutions. Technologies like Visual Studio Tools for Office, and the Outlook View Control can be used
as part of any Repstor affinity solution.

Repstor Protocol Handler

Repstor implements a protocol handler which is compatible with the SharePoint stssync protocol
handler. The Repstor protocol handler adds some additional functionality that can be used to
provide Repstor-specific functionality.

The protocol handler URLs can be used on any web page in order to perform operations against
Repstor affinity.

The standard protocol handler (installed by Outlook) will add SharePoint document libraries into
Outlook. Affinity replaces this protocol handler to redirect document libraries to be synchronized in
Outlook by Repstor affinity. The Repstor protocol handler can be used to add other non-SharePoint
repository types into Outlook.

Example standard stssync command:

stssync://sts/?ver=1.1&type=documents&cmd=add-folder&base-url=http://oink-sid5/subsite&list-
url=/Shared%20Documents/&guid={27d2281d-0c14-4e00-8ab1-203124d09e7f}&site-
name=subsite&list-name=Shared Documents&folder-url=/joe/bloggs&folder-id=2

Standard stssync parameters for Repository Synchronization

Name Description

Base-url The URL of the site

List-url The list component of the URL

Guid SharePoint Guid of the list
List-name Name of the list

Folder-url URL associated with sub folder to be

synchronized

Site-name Name of the SharePoint site
Cmd Add-folder — no other commands are supported.
Type Documents — no other types are supported by

Repstor. Other types (like calendar) will be
forwarded to the previous stssync handler that
Repstor’s version replaced.

Repstor custom stssync functionality

Repstor adds some additional stssync commands that can be called from any web page.

Name Value and example setting

Stssync://roam/add=<encodedurl> Add a repository with the given URL. The URL will be any

URL displayed in the browser when viewing a SharePoint
document library, list of sub-folder. You can also prefix the
URL with the repository type (e.g. :::SharePoint:::) and a
parent folder setting (e.g. :::Docs:Private:::)

Stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2
013%2FShared%2520Documents%2FForms%2FAllltems.aspx%3FRootFolder%3D%
252Fsites%252Fdem02013%252FShared%2520Documents%252FInformation%25
20Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57
%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D

stssync://roam/add=%3A%3A%3ASharePoint%3A%3A%3A%3A%3A%3Amy%20do
cs%3Atest%3A%3A%3ANttps%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Ftest
%2Ffergus%2Fdoc%25201ib%2520with%2520doc%2520sets%2FForms%2FAllltems
.aspx

Stssync://roam/regrepos=<encoded Set the central repository URL of the affinity system to the
url> encoded URL.

Stssync://roam/reqrepos=
https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FLists%2FCent
ral%2520Repositories%2FAllltems.aspx

Stssync://roam/refresh-reqrepos Refresh the users central repository list (perhaps after it is

known that the server has added a new entry to it)

Stssync://roam/ext=<myinfo> Pass <myinfo> to the RepstorExt_RunExtensionAction

extension for more processing

stssync://roam/add=<urllocation>#fil Synchronize a SharePoint document library filtered to a

ter:<prop internal particular document or set of documents

name> | <propval>:::<repos display

stssync://roam/add=:::SharePoint:::https://repstor.sharepoint.com/sites/Matters/
name>::: 00278/Documents#filter:_dlc_Docld | REPST-1292866892-119:::REPST-
1292866892-119:::

Repstor-config command

As part of the Repstor affinity installation, a small executable “Repstor-Config.exe” is placed in the
Repstor affinity installation folder. It is used by the stssync protocol handler. Any stssync protocol
string can be passed to the Repstor-Config command to perform the equivalent action (for example,
in client side batch files).

Example:

Repstor-config.exe “stssync://roam/add=<encodedurl>”

stssync://roam/add=%3cencodedurl
stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FShared%2520Documents%2FForms%2FAllItems.aspx%3FRootFolder%3D%252Fsites%252Fdemo2013%252FShared%2520Documents%252FInformation%2520Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D
stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FShared%2520Documents%2FForms%2FAllItems.aspx%3FRootFolder%3D%252Fsites%252Fdemo2013%252FShared%2520Documents%252FInformation%2520Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D
stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FShared%2520Documents%2FForms%2FAllItems.aspx%3FRootFolder%3D%252Fsites%252Fdemo2013%252FShared%2520Documents%252FInformation%2520Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D
stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FShared%2520Documents%2FForms%2FAllItems.aspx%3FRootFolder%3D%252Fsites%252Fdemo2013%252FShared%2520Documents%252FInformation%2520Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D
stssync://roam/add=https%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Fdemo2013%2FShared%2520Documents%2FForms%2FAllItems.aspx%3FRootFolder%3D%252Fsites%252Fdemo2013%252FShared%2520Documents%252FInformation%2520Requests%26FolderCTID%3D0x01200037B24B4E371074439FB41D298FA24C57%26View%3D%257B422CF3A2-112E-4025-AD61-BA20599BF749%257D
stssync://roam/add=%3A%3A%3ASharePoint%3A%3A%3A%3A%3A%3Amy%20docs%3Atest%3A%3A%3Ahttps%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Ftest%2Ffergus%2Fdoc%2520lib%2520with%2520doc%2520sets%2FForms%2FAllItems.aspx
stssync://roam/add=%3A%3A%3ASharePoint%3A%3A%3A%3A%3A%3Amy%20docs%3Atest%3A%3A%3Ahttps%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Ftest%2Ffergus%2Fdoc%2520lib%2520with%2520doc%2520sets%2FForms%2FAllItems.aspx
stssync://roam/add=%3A%3A%3ASharePoint%3A%3A%3A%3A%3A%3Amy%20docs%3Atest%3A%3A%3Ahttps%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Ftest%2Ffergus%2Fdoc%2520lib%2520with%2520doc%2520sets%2FForms%2FAllItems.aspx
stssync://roam/add=%3A%3A%3ASharePoint%3A%3A%3A%3A%3A%3Amy%20docs%3Atest%3A%3A%3Ahttps%3A%2F%2Frepstor.sharepoint.com%2Fsites%2Ftest%2Ffergus%2Fdoc%2520lib%2520with%2520doc%2520sets%2FForms%2FAllItems.aspx
stssync://roam/reqrepos=%3cencodedurl
stssync://roam/reqrepos=%3cencodedurl
stssync://roam/refresh-reqrepos
stssync://roam/add=%3curllocation%3e#filter:<prop internal name>|<propval>:::<repos
stssync://roam/add=%3curllocation%3e#filter:<prop internal name>|<propval>:::<repos
stssync://roam/add=%3curllocation%3e#filter:<prop internal name>|<propval>:::<repos

Repstor affinity Property Model

Repstor affinity synchronizes properties from the server repositories into the folders within the
Outlook message store. Many of these properties are used to display information and property
fields to the user. Some properties are internal and can be used as part of a custom solution.

Repstor will store properties at the folder and message level, and will store additional properties at
the Repository level (the top level folder of a synchronized repository). Occasionally properties will
be stored at a global level.

The utility OutlookSpy can be used to view properties stored within Repstor affinity. See
http://www.dimastr.com/outspy/home.htm.

You can also display properties that are part of a message or folder by right clicking the item with
CTRL and SHIFT held down. This will also appear if when Repstor diagnostics are switched on.

TEME | LGS 2 4 o v I

These options display the properties in a newly created message:

ik s O - 8 Engagemant Documants - Message (HTMI > x

“ MESSAGE WNSERT OPTIONS FORMATTEXT REVIEW DEVELOPEN CutlookSoy
Bdl n s) -6 - A A ' Atlach Foe f -
i Times New Ron - € AA | » Q ’/| ’
B I U : = 3 Artach them ~ -
Send Pavie Names Tags Zoom Start Apps for
;o . A 2 Sanatbuee
aret Fie - ® Z-A 1 v & Sgnatise . king ~ Office
pstor ' gtoard Basi .
&) support

Ingagement Documenty

SO SOMOR skt Lt Tcra) « 1015281118 132
TV TT MO et S 1 gppbeemyg Mol = STTLARI T 0

Folder Properties

When Repstor affinity synchronizes a folder it will synchronize:

http://www.dimastr.com/outspy/home.htm

e Astandard set of properties used as part of the synchronization
o Aset of custom properties that exist on the repository folder

Standard Repstor folder properties (any repository type)

Property Name Type Description and Example Value
0x3001001F String Folder name
Replify.FromServerltem String Unique GUID of the item within the repository.

{D1E8B739-6CD0-42CF-A40E-1ADF9F9297C4}

Replify.FromServerShortlte | String Short ID of the item within the repository.
mld

5835
Replify.RepositoryLocation | String URL to the repository

https://repstor.sharepoint.com/Shared Documents

Replify.RepositoryType String Repository type being synchronized.

SharePoint, WorkSite, FileShare, SkyDrive

Replify.FolderLocation String URL to the folder within the repository — this format is used
when you select “open folder” from the affinity folder
context menu.

https://repstor.sharepoint.com/Shared
Documents/Releases/2.4.0/Documentation

Replify.LastSyncTime DateTlme | Last time a synchronization of this folder was performed.
(Used to queue folder synchronizations)

16:18, 05/08/2014

Replify.LastBrowseTime DateTIme | 16:18,05/08/2014

Last time the user browsed this folder. (Used to expire

folders)
Replify.SynclssueFolderMes | String Long message displayed in the folder properties page to give
sage information on the last synchronization of this folder.

Synchronization started: 05/08/2014 17:18 Folder:
https://repstor.sharepoint.com/Shared
Documents/Releases/2.4.0/Documentation Uploading
ChangesSkipping edit doc... Checking for deleted items
Downloading new or changed items Downloading sub
folders Synchronization completed: 05/08/2014 17:18

Replify.LastSyncDetailsFold | String Short message displayed in folder “Sync Now” tooltips.
erMessage
Folder Synchronization Complete No changes.
ROAM.NumSyncsSinceAvail | Number Used internally to determine when next full check will be
abilityCheck performed on the repository (will re-check permissions
changes)
4
Etag String Etag of the folder. Not used currently.
{D1E8B739-6CD0-42CF-A40E-1ADF9F9297C4},1
ROAM.PermMask2 String Permission mask used to determine the user’s permissions
on the folder. E.g. whether they can add and delete
documents.
Ox7fffffffffffefef
Replify.SPS.RequireChecko | String Does this document library require the user to explicitly

ut

check out or not.

False

ROAM.HeaderDownloadTy
pe

ROAM.ExpiredFolder

Standard affinity properties (for SharePoint repositories)

SPFolderPath String | Folder path within the document library.

Shared Documents/Releases/2.4.0/Documentation
SPIsList Boole | False for document libraries, true for lists.

an

False
SPListld String | Guid of the list this folder is a part of.

{25ACE67A-D27D-4522-BFA3-401D52303250}
SPListName String | Name of the list this folder is part of.

Shared Documents
SPWebUrl String | URL of the SharePoint site this list is part of.

https://repstor.sharepoint.com

ChangeToken String | Token used to perform incremental synchronizations. Clear
this to resync the entire folder.

1;3;25ace67a-d27d-452-bfa3-
401d52303250;635428523123130000;29360654

NextPageToken String | Used in batched incremental synchronizations.

Typical affinity properties (for SharePoint repositories)

All the other folder properties associated with the SharePoint folder are synchronized. These
include custom folder properties that have been added. They are all of type “String”. Properties are
renamed from the field names in SharePoint according to the following rules.

e

e Any occurrence of the character is replaced with “-“ (underscore is replaced with single

hyphen)
e Any occurrence of “-“is replaced with “----“ (existing hyphens replaced with 4 hyphens)

See Appendix A for a set of example folder properties.

Document Properties

When Repstor affinity synchronizes a document it will synchronize:

e Astandard set of properties that are used by Repstor as part of the synchronization

e A set of custom properties — providing full access to the properties of the SharePoint (or
other repository item). These are stored in Outlook as string properties.

o It will then convert some of the custom properties into Outlook friendly properties that can
be used in Outlook views and property pages. The converted properties are those that are
listed as fields of the SharePoint document library or list.

Standard Repstor properties (any repository type)

Property Name Type Description and Example Value
0x0037001F String Document display name / subject
Replify.FromServerETag String The server etag associated with this document

{0B7A462D-BC4C-45AA-A714-
01491214007D},11

Replify.FromServerListld String The List Id where this document is stored.

{25ACE67A-D27D-4522-BFA3-401D52303250}

https://repstor.sharepoint.com/

Replify.FromServerltem

String

The Guid of this item within the server.

{0B7A462D-BC4C-45AA-A714-01491214007D}

Replify.ltemContentType

String

Content Type of this item.

Document

Replify.FromServerShortltem|d

String

The SharePoint short item identifier of this
document.

5840

Replify.FromServerVersion

String

The internal version number of this item.

9

Replify.FromServerFileName

String

The filename associated with this item.

Extensibility Guide.docx

Replify.MessagelsUnchanged

Boolean

Boolean property to indicate whether this
document has been changed in the client since
it was synchronized. This property is changed
automatically when any properties of the item
change. This property is used to determine
pending item changes.

False

Replify.FormRegionClass

String

Message Class we want to assign to the item to
override the outlook one and display our own
icon/property page.

IPM.Post.ROAM.Doc.SharePoint.docx.Document

Replify.BeforeFormRegionClass

String

Message Class the item had before we
synchronized it. (The standard Outlook
message class of the item)

IPM.Document.Word.Document.12

ROAM.AddedByMe

Boolean

Document was added by current user, from this
client.

False

ROAM.DuplicateHash

String

Hash of document (or key properties if email).
Used in duplicate detection.

{A4E75CFC-2BD3-2E80-CFAA-2C284E2F263C}

ROAM.IsDuplicate Boolean Indicates if this item is detected as a duplicate
or not.
False

Replify.ChangedFields String Used to flag fields which have changed (see
below)

To Adjust adding behavior

ROAM.ForcePromptForProperties | Boolean True if the user should be prompted for
properties on addition

For items in error

Replify.SynclssueType String

Replify.SynclssueMessage String

For items currently launched for editing by the user.

Replify.DocumentLaunched

String

Set on documents to indicate that they are
currently being edited by the user.

1

Replify.LaunchedFilePath

String

Launch path where an edited document is
currently being edited.

C:\Users\Fergus\AppData\Local\Repstor\Office
15 Profile - Outlook\C\00000001\Extensibility
Guide.docx

Replify.LaunchedWriteTime

DateTime

Last time an edited document was written to
disk.

17:49, 04/08/2014

Replify.LaunchedProcessKey

String

The process ID of the process currently editing
the document. Affinity will detect this process
closing in order to decide when to synchronize
the edit to the server.

11112-

For items currently being synchronized

ROAM.BeingSynced

Number

Iltem is currently undergoing synchronization

ROAM.OpenByProcess Number Item currently is part of an edit property dialog,
or view document launch.

Typical affinity properties (for SharePoint repositories)

Repstor affinity will synchronize all properties related to an item regardless of the content type. All
these properties are synchronized as string properties. Properties are renamed from the field names
in SharePoint according to the following rules.

o“on

e Any occurrence of the character is replaced with “-“

“u

e Any occurrence of “-“is replaced with “—

See Appendix A for a set of example document properties.

Repository Properties

When Repstor affinity synchronizes a repository it will store additional properties related to the
overall repository (regardless of the sub folders). Repository properties will include the standard
folder properties described above. Additionally at the repository level, the following properties will
be synchronized.

Standard Repstor properties (any repository type)

Property Name Type Description and Example Value

Replify.SyncDlsabled Boolean Whether the synchronization for this whole
repository is disabled or not

Replify.MainFolder Boolean True for a top level repository folder. (not set
on sub folders, or on parent folders)

ROAM.RepositorylsRequired Boolean A repository that cannot be removed by the
user
ROAM.TemporaryRepository Boolean True if this repository should be cleared out at

the end of the outlook session. Note this will
not force synchronization of pending items,
which will be lost.

Replify.ManuallyCreated Boolean True if the repository was added by the user (as
opposed to added through central repositories)

Typical Repstor properties (SharePoint repository type)

Property Name Type Description and Example Value

CT-Defaults, CT-Info, CT-0x... String Content type information for the repository

RS-UG

String

User and group information for the repository.

SPListXML, SPViewsXML

String

Information on the list and view of the
repository.

Changing Properties

Changing the property value itself within Outlook will not trigger a change within the server
repository, it is also necessary to mark the property as changed within a special
Replify.ChangedFields string property

Change tag format:

\n<fieldName>\t<basicName>\t<fieldType>\n

Where:

o fieldName is the internal field name of the SharePoint field. (ows-Title)
e basicName is the display name of the SharePoint field. (Title)

o fieldType is a number reflecting the type of field (it is only important that this is set to 12/13

for user and multi user fields respectively)

e \nis the newline character

e \tisthe tab character

For example, to change the name of a document you would set:

\nows-BaseName\tName\t1\n

These values must be appended together for multiple field changes.

Using Properties in custom Outlook Solutions

The properties described above are available on the folder and message property sets that are used
within Repstor affinities extensibility mechanisms. When using other technologies (like VSTO) it the

message property sets are part of the Outlook message items, but the folder and repository
properties are part of a folder associated message “LSFolder.CustomProps”.

User Interface Extensibility

Repstor 2.4 introduced new functionality for extending the Repstor affinity user interface with
custom actions. It also introduced various extensibility points at key points within the product. This
functionality is only available in Outlook 2010 and above.

The extensibility mechanism uses VBScript functions defined within an VBScript file starting with the
name “Extensions” and having the extension “VBS” in a Scripts folder beneath the Repstor affinity
installation directory. (The Scripts folder, and Extensions*.vbs file must be created)

Once the extensions file is in place, the extensions are enabled.

Extensions file should be named appropriately to the extension they are providing. For example
Extensions — Sharing.vbs could provide extensions based on new sharing capability.

Function names should be used to avoid clashes between Extension files. Repstor will look for the
main function names lists below, but there can only be one of each function name. To avoid
clashes, you can also append the name of the extensions file onto the function.

e.g. instead of RepstorExt_FolderExtName as a function name you should use
RepstorExt_FolderExtName_Sharing if the function is contained in an extension file called
“Extensions — Sharing.vbs”

Custom Actions

Folder Actions
Folder actions appear on the context menu of folders within the Repstor affinity message store.

= 2.1.3 ;’_::unt-':nt Type: Document
‘ Company: Repstor

b214 . Created: 13/06/2014

I+ 2.1.5 Properties... Created By: Fergus Wilson
Date Received: Mone

=220 Mew Folder... ? I o

I 2.3.0 Repstor affinity » I Fergus Wilson

4240 Custorner Bxtensions » External Folder port Guide

Documentanon =)

Another

[Assist for SharePoint COTTE T e Detment

I Concepts Company: Repstor
. Created: Mon 23/07
[Custodian 1 rraatad B Earmoe Wilcnm

The name of parent menu for folder actions is given by the RepstorExt_FolderExtName function as
shown below.

Function RepstorExt FolderExtName ()
RepstorExt FolderExtName = "Customer Extensions"

End Function

Since Repstor 3.1.2, the FolderExtName function can return a comma separated set of folder names,
to allow for two different sets of folder extensions.

When the context menu is to be displayed, affinity calls on the function
RepstorExt_FolderVisibleActions, and RepstorExt_NamedFolderVisibleActions to calculate which
menu items should be displayed. The function can look at the properties of the selected folder in
the PropMap parameter passed into it. See below for a description of the PropMap parameter. The
value returned is a comma separated list of folder actions to be displayed in the menu.

Function RepstorExt FolderVisibleActions (PropMap)
RepstorExt FolderVisibleActions = "External Folder,Another"

End Function

Function RepstorExt NamedFolderVisibleActions (FolderGroup, PropMap)
If (FolderGroup = “Workflow”) Then
RepstorExt NamedFolderVisibleActions = "Folder Export,Archive"
End If
If (FolderGroup = “Collaboration”) Then
RepstorExt NamedFolderVisibleActions = "Create Deal Room,Share"

End If

End Function

If a user selects one of the custom folder items, then the RepstorExt_FolderAction function is called.
Note that Actions need to be unique across any folder groups:

Sub RepstorExt FolderAction(Action, FolderPropMap)

Set WshShell = CreateObject ("WScript.Shell")

WshShell.Run "http://www.repstor.com/" & "?" & URLEncode (Action)
End Sub

The folder action sub routine is passed the name of the action the user selected (as returned in the
visible actions call), and the property map of the folder currently selected.

Message and Document Actions
Message and document actions work in a very similar way to the folder actions — they appear on the
context menu of messages and documents within the Repstor affinity message store.

Company: Repsto

Created: 13/06/20 dp Junk >
Created By: Fergu
Date Received: Ng 7% Delete
Fergus Wilsor _ 0 @&
Repstor affinity s1 ™ Mon 28/07
From: .

Cust Extensions # =
Document Subjec HERemEr Eenson External Message
To

Content Type: Document AnotherMessage

Company: Repstor
Created: Mon 23/07
Created By: Fergus Wilson
Date Received: Mone

I Fergus Wilson g5

The name of parent menu for message actions is given by the RepstorExt_MessageExtName function
as shown below.

Function RepstorExt_ MessageExtName ()
RepstorExt MessageExtName = "Customer Extensions"

End Function

Since 3.1.2, this can be a comma separated set of context menus. When the context menu is to be
displayed, affinity calls on the function RepstorExt_MessageVisibleActions and
RepstorExt_NamedMessageVisibleAction to calculate which menu items should be displayed. The
function can look at the properties of the selected folder and the selected message in the
FolderPropMap and MessagePropMap parameters passed into it. See below for a description of
these parameters. The value returned is a comma separated list of message actions to be displayed
in the menu.

Function RepstorExt MessageVisibleActions (FolderPropMap, MessagePropMap))
RepstorExt_MessageVisibleActions = "External Message,AnotherMessage"
End Function
Function RepstorExt_ NamedMessageVisibleActions (ExtName, FolderPropMap,
MessagePropMap))
If (ExtName = “Workflow”) Then

RepstorExt NamedMessageVisibleActions = "Document Review,Submit as
Record"

End If
If (ExtName = “Collaboration”) Then

RepstorExt NamedMessageVisibleActions = "Share"
End If

End Function

If a user selects one of the custom message items, then the RepstorExt_MessageAction function is
called.

The action names must be unique across all message extension groups.

Sub RepstorExt MessageAction (Action, FolderPropMap, MessagePropMap)

Set WshShell = CreateObject ("WScript.Shell")

dim strTitle

strTitle = MessagePropMap.ItemStr ("0x0037001F")

If (FolderPropMap.HasKey ("Replify.RepositoryType")) Then
dim reposType
reposType = FolderPropMap.ItemStr ("Replify.RepositoryType")
If (reposType = "WorkSite") Then

! WshShell.Run "http://www.repstor.com/" & "?type=WS&action=" &
URLEncode (Action) & "title=" & UrlEncode(strTitle)

End If
If (reposType = "SharePoint") Then

! WshShell.Run "http://www.repstor.com/" & "?type=SP&action=" &
URLEncode (Action) & "title=" & UrlEncode (strTitle)

End If
End If
End Sub

The folder action sub routine is passed the name of the action the user selected (as returned in the
visible actions call), and the property map of the folder currently selected.

Global Actions

Global actions are always displayed in the ribbon bar. These actions cannot be hidden however the
RepstorExt_IsButtonEnabled method can be optionally used to decide if they are enabled for the
current selection.

The ribbon groups are determined by a call to RepstorExt_RibbonButtonGroupName. From 3.1.2
this can return a comma separated set of ribbon group names.

Function RepstorExt RibbonButtonGroupName ()
RepstorExt RibbonButtonGroupName = "Repstor custodian,DMS"

End Function

The function RepstorExt_RibbonButtons or RepstorExt_NamedRibbonButtons can be used to
determine what buttons to display.

Function RepstorExt RibbonButtons ()
RepstorExt RibbonButtons= "Create Matter"

End Function

Function RepstorExt_NamedRibbonButtons (groupName)
if (groupName = "Repstor custodian") Then
RepstorExt NamedRibbonButtons = "My Matters,Create Matter,All Matters"
End if

if (groupName = "DMS") Then
RepstorExt NamedRibbonButtons = "Report"
End if

End Function

Then the sub routine RepstorExt_CallRibbonButton is used when the user clicks on the button. All
button names must be unique across ribbon groups. The folderPropMap argument has the general
Outlook Folder properties, folderCustomProp has custom folder properties only when the selected
folder is a Repstor affinity folder.

Function RepstorExt CallRibbonButton (ButtonName, folderPropMap, folderCustomProp,
itemPropMap)

' Do something here
' itemPropMap is nothing if there’s no message selected

' folderCustomProp is nothing if it’s a non Repstor folder

End Function

The sub routine can be optionally implemented to disable the actions depending on the current
folder or message selection. If this method is missing then all actions are always enabled.

Function RepstorExt_IsButtonEnabled (buttonName, folderPropMap, folderCustomProp,
itemPropMap)

' itemPropMap is nothing if there’s no message selected
if (itemPropMap is Nothing) then
RepstorExt IsButtonEnabled = false
Exit function
end if
' folderCustomProp is nothing if it’s a non Repstor folder
if (folderCustomProp is nothing) then
RepstorExt IsButtonEnabled = true
else
RepstorExt_IsButtonEnabled = true
end if

end function

Property Page Extensibility

The property pages displayed on Repstor affinity messages can be configured to determine the exact
property set to display at a time.

By default, the properties contained within an item’s content type are displayed along with any error
information.

The RepstorExt_PropertyPageVisibleProps function can be used to limit or expand the properties
displayed at a particular time. If this function returns an empty string, then the default functionality
is used — the properties of the content type will be displayed.

Function RepstorExt PropertyPageVisibleProps (MessagePropMap)

RepstorExt PropertyPageVisibleProps = "ows-FileLeafRef, ows-Title, ows-
Editor,ows-FileSizeDisplay,ows--dlc-DocId,ows--dlc-DocIdUrl,ows-MetaInfo"

End Function

If the fields are to be expanded beyond those within the item’s content type, it is necessary to call
another function to indicate to Repstor that additional properties may be included in the property

page.

Function RepstorExt PropertyPageAllFieldsNeeded (MessagePropMap)
RepstorExt_PropertyPageAllFieldsNeeded = True

End Function

New Message Extensions

When a new item is added to Repstor affinity, affinity will calculate the properties based on a
combination of defaults and existing properties. If any mandatory properties are not set, affinity
will display a property dialog and ask the user to complete the properties.

The RepstorExt_NewMessage function gives a solution the opportunity to assign properties during
this process, and avoid prompting the user for properties.

Sub RepstorExt NewMessage (MessagePropMap)
‘' do something based on content type
dim strTitle
strTitle = MessagePropMap.ItemStr ("ows-ContentType")

‘' Set a property
MessagePropMap.ItemStr ("ows-Title") = "my new title"

' Set a prompt message to the user
MessagePropMap.ItemStr ("Replify.SyncIssueMessage") = "Make sure to fill all
properties in!"

End Sub

The RepstorExt_PreUpload function is called just before upload. This is after all client side
prompting and setting of properties has been completed. It provides an opportunity to change the
name of the uploaded item.

Sub RepstorExt_ PreUpload(IsNewItem, MessagePropMap)
If (IsNewItem) Then
fileName = MessagePropMap.ItemStr ("Replify.FromServerFileName")

pos = InStrRev(fileName, ".")
baseFileName = Left(fileName, pos - 1)
ext = Mid(fileName, pos + 1)

curDate = Year(Date) & "_" & Month(Date) & "_" & Day(Date) & "_" &
Replace(Time, ":", " ")
MessagePropMap.ItemStr ("Replify.FromServerFileName") = curDate & " " &
baseFileName & "." & ext
End If
End Sub

In 3.7.1 Repstor affinity, new extensions were added to allow further control over messages and
documents added by the user. These extensions are called at the very start of the process, before
any prompts for properties have occurred.

The RepstorExt_UserAddedltems is called when one or more documents or emails is added to the
system. It is called once for a single batch of documents. The MessagePropMap passed in is the first
message in the batch. The function must return true if subsequent calls to
RepstorExt_UserAddedltem are required.

Dim strAuthor

Function RepstorExt UserAddedItems (FolderPropMap, MessagePropMap, Num)
if (MessagePropMap.HasKey ("Author")) Then
RepstorExt UserAddedItems = false
Exit Function
end if

strAuthor = repdocs.ShowPromptDialogWithCancel (“Repstor”, “Enter a value for
Author”, bCancel)

RepstorExt_UserAddedItems = true

End Function
Sub RepstorExt UserAddedItem (FolderPropMap, MessagePropMap)

MessagePropMap.ItemStr ("Author") = strAuthor
‘' Should mark the author property as a changed field
End Sub

New Synchronized Message Extensions

When a new item is synchronized from a repository to Repstor affinity, affinity will store the
properties of the item it retrieves from the source repository. There are two extensions possible.
The first allows you to add new properties or adjust the properties of the item being synchronized.

The RepstorExt_NewSyncedMessage function gives a solution the opportunity to store additional
properties during this process. This can be used to adjust properties for display in the Repstor
property panels or for adding additional properties needed through extensibility.

Sub RepstorExt NewSyncedMessage (FolderPropMap, MessagePropMap)

‘' Set a property

MessagePropMap.ItemStr ("NeedThisPropertyInOutlook") = "OurCustomProperty"
End Sub

The second extensibility point function RepstorExt_PostNewSyncedMessage is called after the item
has been synchronized, and saved in the Repstor affinity store. This allows you to perform
additional functionality

Sub RepstorExt_ PostNewSyncedMessage (FolderPropMap, MessagePropMap)
‘ Perform some client functionality related to new messages

End Sub

New Synchronized Folder Extensions

When a new sub folder is synchronized from a repository to Repstor affinity, affinity will store the
properties of the item it retrieves from the source repository. This allows you to add new properties
or adjust the properties of the item being synchronized. This may be useful to give a folder a
friendlier name (perhaps based on other properties than the main folder name in the repository).
Care should be taken to when renaming is allowed on these folders. The renamed value will include
the friendly name if the folder name is changed.

The extension is passed the folder property map (which normally includes the repository properties
associated with the folder) and the actual folder property map. The actual folder property map gives
access to the Outlook folder object, and can be used to change the display name of the folder, as
shown in the example.

This extension must have the NewSyncFolderExt registry settings enabled before it will be called.

Sub RepstorExt NewSyncedFolder (FolderPropMap, ActualFolderPropMap)
dim strTitle
strTitle = ActualFolderPropMap.ItemStr ("0x3001001F")

dim strId

strId = FolderPropMap.ItemStr ("ows-ID")

ActualFolderPropMap.ItemStr ("0x3001001F") = strTitle & " (" & strId & ")"
End Sub

When a new Parent folder (not a repository folder, but a virtual grouping folder above the repository
folder) is created, you can call a different extension. This extension can be used to set additional
properties that will display folder URL pages or allow right click Open Location values to be set.

An example is below:

Sub RepstorExt NewSyncedParentFolder (FolderPropMap, ActualFolderPropMap)

dim dispName
dispName = ActualFolderPropMap.ItemStr ("0x3001001£f") ‘' folder name

FolderPropMap.ItemStr ("ROAM.FolderWebUrl") = "http://www.google.com?q=" &
dispName ' sets a url to be displayed in preview pane when folder is selected

FolderPropMap.ItemStr ("Replify.FolderLocationUrl") = “http://www.yahoo.com”

' URL available as right click Repstor/Open Location
End Sub

New Document Menu Extensibility

Repstor also has the ability to display a drop down menu to allow a user to select a brand new
document. This functionality is not normally available within the interface, but can be added as part
of the extensibility.

Function RepstorExt NewDocumentMenultems (FolderPropMap)
RepstorExt_NewDocumentMenultems = “templatedocs,docl,doc2,doc3”

End Function

For this functionality to work correctly, the template documents (docl, 2, 3 in the above example)
must exist in a document library synchronized with the name “templatedocs”, which has been
synchronized to the hidden folder area of Repstor (parent folders group name: _ROAMHidden). This
document library must be synchronized explicitly with full item downloads.

Licensing Extensibility

There is one extensibility point that is called when a license is activated for the first time. This is

Sub RepstorExt Activated()
Repsup.DiaglLog “We are off!”
End Sub

http://www.yahoo.com/

This extensibility point can be used to add new repositories or customize an installation on first use.

Outlook Startup and Message Store Extensibility

Extensions allow a custom solution to take action when Outlook starts, is closed, or if the Repstor
affinity message store is added for the first time.

Sub RepstorExt MessageStoreAdded ()
repsup. ImportRepositoryList “u:\InitialReposList.tsv”

End Sub

Sub RepstorExt OutlookOpening ()
repsup.LogDiag “Outlook opened”
End Sub

Sub RepstorExt_OutlookClosing ()
repsup.ExportRepositoryList “q:\MyReposList.tsv”
End Sub

Repository addition and removal Extensibility

Extensions can be called when repositories are added and removed through Repstor affinity.

The AddRepositoryExtension configuration must be enabled to receive the repository added event.

Function RepstorExt RepositoryBeingAdded (FilterName, DefaultName, Location,
ParentGroup)

ParentGroup = “DMS:” & ParentGroup
RepstorExt_RepositoryBeingAdded = true

End Function

Function RepstorExt_ RepositoryBeingRemoved (NormalizedUrl)
If (InStr(NormalizedUrl, “Policies”) > 0) Then
RepstorExt RepositoryBeingRemoved = False
Else

RepstorExt RepositoryBeingRemoved = True

End If

End Function

Custom stssync Extensibility

This powerful extension lets you provide links on web pages that can call custom functionality you
define within an extension. The stssync link is of the following format:

stssync://roam/ext=<str>

the <str> string is passed as a parameter to the extension function.

Function RepstorExt RunExtensionAction (BSTR str)

End Function

Detecting Usage

This extension call can be used to detect whether the user is clicking on any Repstor folders. It can
be used to measure product usage.

Function RepstorExt_FolderBrowse (FolderPropMap)

End Function

Custom Field Validation

This extension call can be used to perform custom validation of fields on a property form.

Function RepstorExt_CustomFieldValidation (FieldName, MessagePropMap)
. ' check field

RepstorExt CustomFieldValidation = “You need to set a value of format XX/1
for this field”

End Function

Luggage Tag Filing
This extension call is used to determine the folder to file to, when a luggage tag is detected on an
incoming message. This extension will override the standard functionality which looks for a luggage

stssync://roam/ext=%3cstr

tag using the quick file index. This functionality is only available when a license for Repstor assist is
available.

Function RepstorExt_GetAutoFileFolderForNewMessage (IncomingMessagePropMap,
LuggageTag)

RepstorExt GetAutoFileFolderForNewMessage = “\\Repstor
affinity\Folder\FileHere”

End Function

Applying properties to parent folders

This extension call is used to apply properties to parent folders when a child folder is synchronized.
This can be used for example, to apply properties associated with a matter to the parent matter
folder in affinity.

Function RepstorExt ApplyReposDataToParent (FolderName, Url, ParentFolders,
CentralReposUrl)

RepstorExt ApplyReposDataToParent = True

End Function

PropertyMap Interfaces

The property map interfaces give access to the properties on the folders and messages that were
introduced earlier in this document. The interface is defined fully in Appendix B.

The interface is a read/write interface — properties can be set and retrieved. However, it is
necessary to save properties that are set — so that Outlook saves the changes to the underlying
message store. The NewMessage and the New message and folder synchronized extensions above
are the only calls for which the saving of properties is guaranteed.

Extensibility Debugging

Care should be taken when developing extensions to Repstor. By default, errors raised in extension
functionality are raised to the calling functionality, and in extreme cases could lead to Outlook
crashing. It is possible to configure Repstor so errors are not raised by setting the DWORD registry
setting: Extension.ThrowOnScriptError to 0.

By setting configuration entry BalloonForScriptErrors or turning on diagnostics, extension errors will
be presented as balloon popups.

Errors within the scripts are always logged through the standard Repstor diagnostic log.

Extensibility Support Object

Within the extensibility scripts, the Repstor extensibility support object is available to obtain

information and perform actions within the main affinity product. This can help with diagnostics,

but can also provide more complete and seamless extensibility functionality.

See Appendix C — Extension Support Object for the definition of the support object.

The object can be used from any of the extensibility functions, and is effectively a callback into the

Repstor product to either perform functions, or to provide information to the user.

Function RepstorExt CallRibbonButton (ButtonName, ..)

Repsup.BalloonPopup “Ribbon Button”, ButtonName & “ has been pressed”

Repsup.LogDiag “We have told the user that the button was pressed”

End Function

The functions available are:

LogDiag Send a diagnostic message to the standard logs
LogError Send an error message to the standard logs
MessagePopup Display a popup message which must be OKed

by the user

BalloonPopup

Display a balloon popup in the taskbar

AddReposWithUI Add a new repository by prompting user to
confirm details
AddReposNoUI Add a new repository, without prompting user

RefreshRequiredRepositories

Refresh the current central repositories list

SyncFolderPath Synchronize a specific folder according to
Outlook folder path.
HasLicenseFor Check if the current license covers some

capability - currently:

SPS_FILTER = 0O,
FILESHARE_FILTER
CATEGORIZATION = 2,
IMANAGE_FILTER = 4,
TRIM_FILTER = 5,
NEEDS_ACTIVATION = 6,
CUSTODIAN = 7,

CRM_LINK = 8,
MINIMAL_CLIENT = 9,
PROVISIONING_ENGINE = 10,

1,

REPSTOR_DRIVE = 11,
HIGHQ = 12,
MERIDIO = 13

SetUserStringConfig

GetUserStringConfig

SetUserDWORDConfig

GetUserDWORDConfig

Set and get configuration of Repstor. Getting
user configuration will get configuration from
user registry, but will also check any local or
group policy settings. Setting will only set the
user’s configuration.

SetUserProfileStringConfig

GetUserProfileStringConfig

Set and get string configuration in the user
registry, beneath an area specific to the current
Outlook profile.

ShowBrowserDialog Bring up a modal window displaying a URL. And
check the dialog response.

ShowCustomDialog Bring up a new style dialog, with a message,
custom buttons with descriptions, and a default
button

ShowPromptDialog Prompt the user for some text

ShowPromptDialogWithCancel

Prompt the user for some text, return if cancel is
pressed

ShowOptionsDialogWithCancel

Prompt the user for a selection of options.
Return if cancel is pressed

ShowConfirmDialogWithCancel

Show yes/no dialog — return cancel if user selects
No.

BrowseFoldersDialog Launch a dialog asking the user to select a folder

RepstorBuildNumber Return the Repstor build number

GetUserLang Get the users language string e.g. “en” or “de”

ImportRepositorylist Import a repository list from a file path

ExportRepositoryList Export the repository list to a path

PendingItemsCount Return the number of items not synchronized to
the server repository

ErrorItemsCount Return the number of items that haven a error
associated with them

LocalEditItemsCount Return number of items currently being edited

RemoveRepository

Remove a repository

GetRepositorylList

Get the entire repository list

IsExistingRepository

Return if a URI is for an existing repository

FindExistingRepositoryPath

Find the folder path for a repository

FindFolderPathProps For a given folder path, return the folder
properties

JumpToFolder Jump to a folder in Outlook

OpenFolderItem Open an item from a folder

FindFolderByProp Find a folder using a folder property (uses quick
file index)

GetDigestValue Get the SharePoint digest value to be used in
SharePoint REST calls

UrlEncode Encode a URL

UrlDecode Decode a URL

CreateAndLaunchPrecedentInFolderPath

Look up the hidden precedent document library,
and create a document from it within the given
folder path

QueuePendingItemFolders

Queue folders which contain items still pending

TouchPendingItems

Mark items as changed that are pending items

GetFolderRepositoryMap

Get a repository map for a given folder property
map

GetParentFolderMapForMessage

Get the parent map for a given message
property map

GetParentFolderMapForFolder

Get the parent folder property map for a given
folder property map

CopyItemToFolder Copy a message from one folder to another
SavePropertyMap Save the values of a changed property map
GetFilterTextForMsg (Assist only) determine the text thatisin a
message and its attachments
LoadCustomRuleSet (Assist only) Load or Create a custom ruleset

within Assist

CustomRuleSetAddText (Assist only) Add some text to a custom ruleset

with the given tag

CustomRuleSetGetTag (Assist only) Return the best tag from a ruleset
for the given text.

SetFieldByDisplayValue Set a field using a display value. This call will
assign appropriate change values to the message

GetFieldDisplayValue Get the current value for display for a given field

GetFolderPath Get the folder path for a given folder property
map

GetMainWindowHandle Get the main window handle for the application

Other Property Page Customization Techniques

As well as the VBScript extensibility mechanism for changing the property page, there are a couple
of other ways to change how the property page looks.

Property pages are displayed using Outlook’s Form Region functionality. The standard property
pages are contained on a form region called MultiltemFormRegion. For list items, and for
documents as a separate property page there is also a CustomListAdj and CustomList formregion
page respectively.

Each form region uses a property panel (LSSImplePropertyGrid) to display the correct properties on
the form with the right labels etc. This property panel can be removed and replaced with property
fields directly on the form, or can be configured to add and remove properties.

Adding and Removing properties from the property grid.
The property grid has four properties which can be changed. Once changed, the form region can be
re-saved to the Repstor affinity “FormRegion” folder.

Property Description

FieldsToDisplayCSV The list of fields that will always be displayed

FieldsToSkipCSV The list of fields that will always be skipped

MaxFieldsToShow Maximum number of fields to display on the
form

ShowVisibleFields Whether or not to show the visible fields in the
content type. This defaults to true.

Fields displayed must either be part of the selected item’s ContentType — or the
RepstorExt_PropertyPageAllFieldsNeeded extension above used to include all fields in the property
form display.

Replacing the Property Grid with direct fields

The property grid can be replaced with Repstor affinity properties provided directly on the form
region. Repstor affinity properties are defined in a set of activex controls. The most common
control is LSROAMSimpleField, but there are a variety of other controls for displaying the different
types of SharePoint properties. Each control has a set of standard properties:

InnerName — the SharePoint property name to be displayed.

Advanced custom solutions can add new property fields that implement functionality around custom
fields — or implement advanced user interfaces within the Repstor affinity property panel. Contact
Repstor support (support@repstor.com) to find out more about that functionality.

Adding new Repository Types

Repstor affinity repository types use a standard plugin style mechanism based on the COM object
model. Itis possible to add new repository types without requiring a new version of Repstor affinity.
Currently adding a new repository type is beyond the scope of this extensibility guide. Contact
Repstor support (support@repstor.com) for help if you would like to support a custom repository

type.

Example Extension File

Function Base64Encode (sText)

Dim oXML, oNode

Set oXML = CreateObject ("Msxml2.DOMDocument.3.0")
Set oNode = oXML.CreateElement ("base64")
oNode.dataType = "bin.base64"

oNode.nodeTypedValue = Stream StringToBinary (sText)
Base64Encode = oNode.text

Set oNode = Nothing

Set oXML = Nothing

End Function

Function Stream StringToBinary (Text)
Const adTypeText = 2
Const adTypeBinary = 1

'Create Stream object
Dim BinaryStream 'As New Stream

Set BinaryStream = CreateObject ("ADODB.Stream")

mailto:support@repstor.com
mailto:support@repstor.com

'Specify stream type - we want To save text/string data.

BinaryStream.Type = adTypeText

'Specify charset For the source text (unicode) data.

BinaryStream.CharSet = "us-ascii"

'Open the stream And write text/string data To the object
BinaryStream.Open

BinaryStream.WriteText Text

'Change stream type To binary
BinaryStream.Position = 0

BinaryStream.Type = adTypeBinary

'Ignore first two bytes - sign of

BinaryStream.Position = 0

'Open the stream And get binary data from the object

Stream StringToBinary = BinaryStream.Read

Set BinaryStream = Nothing

End Function

Function URLEncode (ByVal str)
Dim strTemp, strChar
Dim intPos, intASCII
strTemp = ""
strChar = ""
For intPos = 1 To Len(str)
intASCII = Asc(Mid(str, intPos, 1))
If intASCII = 32 Then
strTemp = strTemp & "+"
ElseIf ((intASCII < 123) And (intASCII > 96)) Then
strTemp = strTemp & Chr (intASCII)
ElseIf ((intASCII < 91) And (intASCII > 64)) Then
strTemp = strTemp & Chr (intASCII)
ElseIf ((intASCII < 58) And (intASCII > 47)) Then
strTemp = strTemp & Chr (intASCITI)
Else
strChar = Trim(Hex (intASCII))
If intASCII < 16 Then
strTemp = strTemp & "%0" & strChar
Else
strTemp = strTemp & "%" & strChar
End If
End If
Next

URLEncode = strTemp

End Function

Function RepstorExt FolderExtName ()
RepstorExt FolderExtName = "Customer Extensions"

End Function

Function RepstorExt FolderVisibleActions (PropMap)
RepstorExt FolderVisibleActions = "External Folder,Another"

End Function

Sub RepstorExt_ FolderAction(Action, FolderPropMap)

' Set WshShell = CreateObject("WScript.Shell")

' WshShell.Run "http://www.repstor.com/" & "?" & URLEncode (Action)
End Sub

Function RepstorExt MessageExtName ()
RepstorExt MessageExtName = "Customer Extensions"

End Function

Function RepstorExt MessageVisibleActions (FolderPropMap, MessagePropMap)
RepstorExt_MessageVisibleActions = "External Message,AnotherMessage"

End Function

Sub RepstorExt MessageAction (Action, FolderPropMap, MessagePropMap)
Set WshShell = CreateObject ("WScript.Shell")
dim strTitle
strTitle = MessagePropMap.ItemStr ("0x0037001F")

If (FolderPropMap.HasKey ("Replify.RepositoryType")) Then

dim reposType
reposType = FolderPropMap.ItemStr ("Replify.RepositoryType")

If (reposType = "WorkSite") Then

! WshShell.Run "http://www.repstor.com/" & "?type=WS&action=" &
URLEncode (Action) & "title=" & UrlEncode(strTitle)

End If

If (reposType = "SharePoint") Then

! WshShell.Run "http://www.repstor.com/" & "?type=SP&action=" &
URLEncode (Action) & "title=" & UrlEncode (strTitle)

End If
End If
End Sub

Function RepstorExt PropertyPageVisibleProps (MessagePropMap)
If (MessagePropMap.HasKey ("Replify.DocumentLaunched")) Then

RepstorExt PropertyPageVisibleProps = "ows-FileLeafRef,ows-Title, ows-
Editor,ows-FileSizeDisplay,ows--dlc-Docld,ows--dlc-DocIdUrl,ows-MetaInfo,ows--
CheckinComment"

Else
RepstorExt PropertyPageVisibleProps = "ows-FileLeafRef, ows-Title, ows-
Editor,ows-FileSizeDisplay,ows--dlc-DoclId,ows--dlc-DocIdUrl,ows-MetaInfo"
End If

End Function

Function RepstorExt PropertyPageAllFieldsNeeded (MessagePropMap)
RepstorExt PropertyPageAllFieldsNeeded = True

End Function

Function RepstorExt_ NewMessage (MessagePropMap)

! dim strTitle

! strTitle = MessagePropMap.ItemStr ("ows-ContentType")

! MessagePropMap.ItemStr ("ows-Title") = "Always the title"

! Set WshShell = CreateObject ("WScript.Shell")

' WshShell .Run "http://www.repstor.com/" & "?" & URLEncode (strTitle)
MessagePropMap.ItemStr ("Replify.SyncIssueMessage") = "Make sure to fill all

properties in"

End Function

Function RepstorExt RibbonButtons ()
RepstorExt_RibbonButtons= "Create Matter"

End Function

' itemPropMap is nothing if there’s no message selected
' folderCustomProp is nothing if it’s a non Repstor folder

Function RepstorExt CallRibbonButton (ButtonName, folderPropMap, folderCustomProp,
itemPropMap)

Set WshShell = CreateObject ("WScript.Shell")

WshShell.Run
"https://custodian.azurewebsites.net/Matter/Create?SPHostUrl=https%3A%2F%2Frepstor%
2Esharepoint%2Ecom%2Fsites%2Fcage"

End Function

' decide whether to enable the ribbon buttons

function RepstorExt IsButtonEnabled(buttonName, folderPropMap, folderCustomProp,
itemPropMap)

' itemPropMap is nothing if there’s no message selected
if (itemPropMap is Nothing) then
RepstorExt IsButtonEnabled = false

Exit function

end if
' folderCustomProp is nothing if it’s a non Repstor folder
if (folderCustomProp is nothing) then
RepstorExt IsButtonEnabled = true
else
RepstorExt IsButtonEnabled = true
end if

end function

Function RepstorExt NewDocumentMenultems (FolderPropMap)

Dim matterUrl, matterUrlBase64, spHostUrl, serviceUrl, url,
spHostUrlEncoded, serviceUrlEncoded, strPostData, formAction, form, clientId,
xmlDoc, precedentElems, xmlReq, odoc, inputs, input, precedentTitle

Dim resultArray ()

matterUrl = FolderPropMap.ItemStr ("Replify.FolderLocation")

'DEBUG

spHostUrl = "https://repstor.sharepoint.com/sites/devc"
clientId = "7e2cleal-926f-4bbc-846£-747397c708d4"
serviceUrl = "https://localhost:44307"

matterUrlBase64 = Base64Encode (matterUrl)
spHostUrlEncoded = URLEncode (spHostUrl)

serviceUrlEncoded = URLEncode (serviceUrl)

'Build URL

url = spHostUrl & "/_layouts/15/AppRedirect.aspx?client id="& clientId
&"&redirect uri="& serviceUrlEncoded &"3%2FAjax%2FGetPrecedentsForMatter%2F"&
matterUrlBase64 &"$3F%7BStandardTokens%7D%26SPHasRedirectedToSharePoint%3D1"

'Send the HTTP request

Set xmlReq = CreateObject ("MSXMLZ2.XMLHTTP")
call xmlReq.Open ("GET", url, False)

call xmlReq.send()

'Create the HTML document
Set odoc = CreateObject ("HTMLFILE")

odoc.write xmlReq.responseText

'Get the form object
Set form = odoc.GetElementById("frmRedirect")
If Not form Is Nothing Then

'Get the URL from the form

formAction = form.GetAttribute ("action")

'Get the post variables

strPostData = ""

Set inputs = form.getElementsByTagName ("input")
For Each input In inputs

strPostData = strPostData & input.GetAttribute("name") & "=" &

input.GetAttribute ("value") & "&"

urlencoded"

Next

strPostData = strPostData & "SPVisited=1"

'Create a new HTTP Request to post the form
Set xmlReq = CreateObject ("MSXML2.XMLHTTP")
With xmlReq

.Open "POST", formAction, False

.setRequestHeader "Content-Type", "application/x-www-form-

.send (strPostData)
End With

'Get the result in an XML document
Set xmlDoc = CreateObject("Microsoft.XMLDOM")
xmlDoc. loadXML (xmlReq. responseText)

'Go through each precedent and get the title and add to result array
Set precedentElems = xmlDoc.getElementsByTagName ("FileLeafRef")

Dim title
Set fso = CreateObject("Scripting.FileSystemObject")
Redim resultArray (precedentElems.length + 1)
resultArray (0) = "precedentdocs"
For i = 1 To precedentElems.length

title = precedentElems (i-1) .Text

'Remove the file extension

resultArray (i) = Replace(title,"." &

fso.GetExtensionName (title) ,"")

End If

Next

'Join the array into a comma separated list for returning

RepstorExt NewDocumentMenuItems = Join(resultArray, ",")

End Function

Appendix A - Example Properties (SharePoint)

Example Document Properties

An example property set is shown below. Note that each document’s properties will depend on the
type of the document and on the SharePoint configuration.

Property Name

Example Value

ows-ContentTypeld

0x0101002C8B7ESE5A7AD544818E7C987310B217

ows-Title Extensibility Guide
ows-1D 5840
ows-ContentType Document

ows-Modified

2014-08-01T09:02:597

ows-Created

2014-06-13T18:11:497

ows-Author Fergus Wilson
ows-Editor Fergus Wilson
ows-owshiddenversion 9
ows-WorkflowVersion 1
ows—UIVersion 2560
ows—UlVersionString 5.0
ows—ModerationStatus 0
ows-SelectTitle 5840

ows-Order 27200.0000000000
ows-GUID {E52CBBE0-080E-4502-AA1B-1DB136F34COE}
ows-FileRef Shared Documents/Releases/2.4.0/Documentation/Extensibility

Guide.docx

ows-FileDirRef

Shared Documents/Releases/2.4.0/Documentation

ows-Last-x0020-Modified

2014-08-01T09:03:00Z

ows-Created-x0020-Date

2014-06-13718:11:497

ows-FSObjType

0

ows-SortBehavior

0

ows-PermMask

OXTHFFFFFFFFEFer

ows-FileLeafRef

Extensibility Guide.docx

ows-Uniqueld

{0B7A462D-BC4C-45AA-A714-01491214007D}

ows-Progld

ows-Scopeld

{7D308A85-3398-4E1F-B8E8-F13AEAS6EEAA}

ows--EditMenuTableStart

Extensibility Guide.docx

ows--EditMenuTableStart2

5840

ows—EditMenuTableEnd

5840

ows-LinkFilenameNoMenu

Extensibility Guide.docx

ows-LinkFilename

Extensibility Guide.docx

ows-LinkFilename?2

Extensibility Guide.docx

ows-ServerUrl

/Shared Documents/Releases/2.4.0/Documentation/Extensibility
Guide.docx

ows-EncodedAbsUrl

https://repstor.sharepoint.com/Shared%20Documents/Releases/2.4.

0/Documentation/Extensibility%20Guide.docx

ows-BaseName

Extensibility Guide

ows-Metalnfo

tttttttt:SW|

ows—Level 1
ows—IsCurrentVersion 1
ows-ItemChildCount 0
ows-FolderChildCount 0
ows-File-x0020-Size 2006321
ows-CheckedOutUserld
ows-IsCheckedoutToLocal 0
ows-VirusStatus 2006321

ows-CheckedOutTitle

https://repstor.sharepoint.com/Shared%20Documents/Releases/2.0%20releases/2.4.0/Documentation/Extensibility%20Guide.docx
https://repstor.sharepoint.com/Shared%20Documents/Releases/2.0%20releases/2.4.0/Documentation/Extensibility%20Guide.docx

ows—CheckinComment

Checked in by Repstor

ows-ParentVersionString

ows-ParentLeafName

ows-ParentUniqueld

{D1E8B739-6CD0-42CF-A40E-1ADF9F9297C4}

ows-StreamHash

ows-Doclcon docx
ows-FileSizeDisplay 2006321
ows-Edit 0

ows-Modified-x0020-By

i:0#.f|membership | fergus.wilson@repstor.com

ows-Created-x0020-By

i:0#.f| membership | fergus.wilson@repstor.com

ows-File-x0020-Type docx
ows-SelectFilename 5840
ows-Combine 0
ows-RepairDocument 0

Example Folder Properties (SharePoint)

ows-ContentTypeld

0x0120002373F093BED2364B8772683A62F8D8SE

ows-ID

5835

ows-ContentType

Folder

ows-Modified

2014-06-13T18:10:57Z

ows-Created

2014-06-13T18:10:57Z

ows-Author Fergus Wilson
ows-Editor Fergus Wilson
ows-owshiddenversion 1
ows-WorkflowVersion 1
ows—UIVersion 512

ows—UlVersionString 1.0

ows—ModerationStatus 0

ows-SelectTitle 5835

ows-Order 583500.000000000

ows-GUID {37D5D67D-9C34-4ECD-9959-DODD87708983}
ows-FileRef Shared Documents/Releases/2.4.0/Documentation

ows-FileDirRef

Shared Documents/Releases/2.4.0

ows-Last-x0020-Modified

2014-07-31T09:31:55Z

ows-Created-x0020-Date

2014-06-13T18:10:57Z

ows-FSObjType 1
ows-SortBehavior 1
ows-PermMask Ox7fffffffffffffff

ows-FileLeafRef

Documentation

ows-Uniqueld

{D1E8B739-6CD0-42CF-A40E-1ADF9F9297C4}

ows-Progld

ows-Scopeld

{7D308A85-3398-4E1F-B8E8-F13AEAS6EEAA}

ows--EditMenuTableStart

Documentation

ows--EditMenuTableStart2

5835

ows—EditMenuTableEnd

5835

ows-LinkFilenameNoMenu

Documentation

ows-LinkFilename

Documentation

ows-LinkFilename?2

Documentation

ows-ServerUrl

/Shared Documents/Releases/2.4.0/Documentation

ows-EncodedAbsUrl

https://repstor.sharepoint.com/Shared%20Documents/Rele
ases/2.4.0/Documentation

ows-BaseName

Documentation

ows-Metalnfo

ows—Level 1
ows—IsCurrentVersion 1
ows-ItemChildCount 5
ows-FolderChildCount 0
ows-File-x0020-Size
ows-CheckedOutUserld
ows-IsCheckedoutTolocal 0

ows-VirusStatus

ows-CheckedOutTitle

ows—CheckinComment

ows-ParentVersionString

ows-ParentLeafName

ows-ParentUniqueld

{EF73F962-1DFC-4C98-AE5A-21E64BAFAE99}

ows-StreamHash

ows-Edit

0

ows-SelectFilename

5835

Replify.ContentTypeld

0x0120002373F093BED2364B8772683A62F8D8SE

ows-Combine

ows-RepairDocument

Appendix B - PropertyMap interface
The following is the definition of the ILSPropertyMap interface. Not the HasKey function is only

available for string fields.

Interface ILSPropertyMap :

Idispatch{

[propget, id(l), helpstring("property ItemStr"), defaultcollelem] HRESULT
ItemStr ([in] BSTR key, [out, retval] BSTR* pVal);

[propput, 1id(l), helpstring("property ItemStr"), defaultcollelem] HRESULT
ItemStr([in] BSTR key, [in] BSTR newVal);

[propget, 1d(2), helpstring("property ItemNum")] HRESULT ItemNum([in] BSTR
key, [out, retval] ULONG* pVal);

[propput, 1d(2), helpstring("property ItemNum")] HRESULT ItemNum([in] BSTR

key, [in] ULONG newVal) ;

[propget, 1d(3), helpstring ("property ItemDateTime")] HRESULT
ItemDateTime ([in] BSTR key, [out, retval] DATE* pVal);

[propput, 1d(3), helpstring ("property ItemDateTime")] HRESULT
ItemDateTime ([in] BSTR key, [in] DATE newVal);

[propget, 1d(4), helpstring("property PropertyCount")] HRESULT
PropertyCount ([out, retval] ULONG* pVal);

[propget, 1d(5), helpstring("property HasKey")] HRESULT HasKey([in] BSTR
key, [out, retval] VARIANT BOOL* pVal);

[propget, 1d(6), helpstring("property KeyAt")] HRESULT KeyAt ([in] ULONG
index, [out, retval] BSTR* pVval);

[propget, 1d(7), helpstring ("property ItemBool")] HRESULT ItemBool ([in] BSTR
key, [out, retval] boolean* pVal);

[propput, 1d(7), helpstring ("property ItemBool")] HRESULT ItemBool ([in] BSTR
key, [in] boolean newVal);

[propget, 1d(8), helpstring ("property ItemDouble")] HRESULT ItemDouble ([in]
BSTR key, [out, retval] DOUBLE* pVal);

[propput, 1d(8), helpstring ("property ItemDouble")] HRESULT ItemDouble ([in]
BSTR key, [in] DOUBLE newVal) ;

[propget, 1d(9), helpstring ("property ItemCurrency")] HRESULT
ItemCurrency([in] BSTR key, [out, retval] VARIANT* pVal);

[propput, 1d(9), helpstring ("property ItemCurrency")] HRESULT
ItemCurrency([in] BSTR key, [in] VARIANT newVal);

[1id(10), helpstring("set multiple ItemStr")] HRESULT ItemStrs([in] VARIANT
vSafeArray) ;

’

Appendix C - Extension Support Object
The following is the definition of the Extension Support Object interface. This is available within
extensibility functionality by calling into the “repsup” object.

interface ILSExtensionSupport : IDispatch
{
HRESULT LogDiag([in] BSTR msg);
HRESULT LogError([in] BSTR msg);
HRESULT MessagePopup([in] BSTR title, [in] BSTR msg);
HRESULT BalloonPopup([in] BSTR title, [in] BSTR msg);
HRESULT AddReposWithUI([in]BSTR filterName,
[in]BSTR defaultName,
[in]BSTR location,
[in, optional]VARIANT parentGroup,
[in, optional]VARIANT openInDrive);
HRESULT AddReposNoUI([in]BSTR filterName,
[in]BSTR defaultName,
[in]BSTR location,
[in, optional]VARIANT parentGroup,
[in, optional]VARIANT headerDownloadType,
[in, optional]VARIANT openInDrive,
[out,retval] BSTR *pAnyError);
HRESULT RefreshRequiredRepositories();
HRESULT SyncFolderPath([in]BSTR FolderPath);

HRESULT HasLicenseFor([in]int capability, [out,retval] VARIANT_BOOL
*pIslLicensed);

HRESULT SetUserStringConfig([in] BSTR setting, [in] BSTR value);

HRESULT GetUserStringConfig([in] BSTR setting, [out,retval] BSTR *pValue);

HRESULT SetUserDWORDConfig([in] BSTR setting, [in] LONG value);

HRESULT GetUserDWORDConfig([in] BSTR setting, [out,retval] LONG *pValue);

HRESULT SetUserProfileStringConfig([in] BSTR setting, [in] BSTR value);

HRESULT GetUserProfileStringConfig([in] BSTR setting, [out,retval] BSTR
*pValue);

HRESULT ShowBrowserDialog([in] BSTR url, [out, retval] BSTR *pDialogResult);

HRESULT ShowCustomDialog([in] BSTR title, [in] BSTR msg, [in]BSTR buttonsCSV,
[in, optional]VARIANT defaultButtonName, [in,optional]VARIANT showCancel, [out,
retval] int *pDialogResult);

HRESULT ShowPromptDialog([in] BSTR title, [in] BSTR bstrPromptCaption, [in,
optional JVARIANT varPromptInitialText, [out, retval]BSTR * pbstrPromptFinalText);

HRESULT ShowPromptDialogWithCancel([in] BSTR title, [in] BSTR
bstrPromptCaption, [in, optional]VARIANT varPromptInitialText, [out, optional] VARIANT
*pbIsCancelled, [out, retval]BSTR * pbstrPromptFinalText);

HRESULT ShowOptionsDialogWithCancel([in] BSTR title, [in] BSTR
bstrPromptCaption, [in] BSTR bstrOptionsPSV,[in, optional]VARIANT
varPromptInitialText, [out, optional] VARIANT *pbIsCancelled, [out, retval]BSTR *
pbstrPromptFinalText);

HRESULT ShowConfirmDialogWithCancel([in] BSTR title, [in] BSTR
bstrPromptCaption, [out, retval] VARIANT *pbIsCancelled);

HRESULT BrowseFoldersDialog([in] BSTR defaultFolder, [out, retval] BSTR
*pSelectedPath);

HRESULT RepstorBuildNumber([out, retval] BSTR *pVersionNumber);

HRESULT GetUserLang([out, retval] BSTR *plLocale);

HRESULT ImportRepositoryList([in] BSTR filePath);
HRESULT ExportRepositoryList([in] BSTR filePath);

HRESULT PendingItemsCount([out,retval] int *pItemsCount);
HRESULT ErrorItemsCount([out,retval] int *pItemsCount);
HRESULT LocalEditItemsCount([out,retval] int *pItemsCount);
HRESULT RemoveRepository([in] BSTR reposNormalizedUrl);
HRESULT GetRepositoryList([out,retval] BSTR *pReposlList);

HRESULT IsExistingRepository([in] BSTR reposNormalizedUrl, [out,retval]
VARIANT_BOOL *pIsRepository);

HRESULT GetDigestValue([in] BSTR spWebUrl, [out,retval] BSTR *pDigestValue);
HRESULT UrlEncode([in] BSTR spUrl, [out,retval] BSTR *pEncodedUrl);
HRESULT UrlDecode([in] BSTR spUrl, [out,retval] BSTR *pDecodedUrl);

HRESULT FindExistingRepositoryPath([in] BSTR reposNormalizedUrl, [out,retval]
BSTR *outlookFolderPath);

HRESULT FindFolderPathProps([in] BSTR outlookFolderPath, [out,retval] IDispatch
**ppFolderProps);

HRESULT CreateAndLaunchPrecedentInFolderPath([in] BSTR outlookFolderPath, [in]
BSTR precedentName);

HRESULT QueuePendingItemFolders();

HRESULT TouchPendingItems();

[propput, bindable, requestedit, id(38)]
HRESULT Application([in]IDispatch * 1lpApp);

HRESULT FindFolderByProp([in] BSTR folderPropName,[in] BSTR folderPropValue,
[in] BSTR folderExtraTokens, [in,optional] VARIANT onlyWritable,[out,retval] BSTR
*pOutlookFolderPath);

HRESULT JumpToFolder([in] BSTR folderPath);

HRESULT OpenFolderItem([in] BSTR folderPath, [in] BSTR propName, [in] BSTR
propValue, [out,retval] VARIANT_BOOL *pSucceeded);

HRESULT GetFolderRepositoryMap([in] VARIANT spFolderPropMap, [out, retval]
VARIANT *pReposFolder);

HRESULT GetParentFolderMapForMessage([in] VARIANT spMessagePropMap, [out,
retval] VARIANT * pParentFolder);

HRESULT GetParentFolderMapForFolder([in] VARIANT spFolderPropMap, [out, retval]
VARIANT * pParentFolder);

HRESULT CopyItemToFolder([in] VARIANT spMessagePropMap, [in] BSTR
bstroutlookPath);

HRESULT SavePropertyMap([in] VARIANT spMessagePropMap);

HRESULT GetFilterTextForMsg([in] VARIANT spMessage, [out,retval] BSTR
*pbstrFilterText);

HRESULT LoadCustomRuleSet([in] BSTR bstrRuleSetName, [in] int expiryDays);

HRESULT CustomRuleSetAddText([in] BSTR bstrRuleSetName, [in] BSTR bstrTagName,
[in] BSTR bstrText);

HRESULT CustomRuleSetGetTag([in] BSTR bstrRuleSetName, [in] BSTR bstrText,
[out, retval] BSTR *pbstrCat);

HRESULT SetFieldByDisplayValue([in] VARIANT spMessagePropMap, [in] BSTR
bstrFieldName, [in] BSTR bstrValue);

HRESULT GetFieldDisplayValue([in] VARIANT spMessagePropMap, [in] BSTR
bstrFieldName, [out, retval] BSTR *pbstrValue);

HRESULT GetFolderPath([in] VARIANT spFolderPropMap, [out, retval] BSTR *
pbstrFolderPath);

HRESULT GetMainwindowHandle([out, retval] LONG *pValue);
¥
}

